Pipe-Dependent Ventral Processing of Easter by Snake Is the Defining Step in Drosophila Embryo DV Axis Formation

نویسندگان

  • Yong Suk Cho
  • Leslie M. Stevens
  • David Stein
چکیده

The establishment of Drosophila embryonic dorsal-ventral (DV) polarity relies on serine proteolytic activity in the perivitelline space between the embryonic membrane and the eggshell. Gastrulation Defective cleaves and activates Snake, which processes and activates Easter, which cleaves Spätzle to form the activating ligand for the Toll receptor. Ventral restriction of ligand formation depends on the Pipe sulfotransferase, which is expressed in ventral cells of the follicular epithelium surrounding the developing oocyte. Pipe modifies components of the developing eggshell to produce a ventral cue embedded in the vitelline membrane. This ventral cue is believed to promote one or more of the proteolysis steps in the perivitelline space. By examining the processing of transgenic, tagged versions of the perivitelline proteins during DV patterning, we find that the proteolysis of Easter by Snake is the first Pipe-dependent step and therefore the key ventrally restricted event in the protease cascade. We also find that Snake and Easter associate together in a complex in both wild-type and pipe mutant-derived embryos. This observation suggests a mechanism in which the sulfated target of Pipe promotes a productive interaction between Snake and Easter, perhaps by facilitating conformational changes in a complex containing the two proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfation of Eggshell Components by Pipe Defines Dorsal-Ventral Polarity in the Drosophila Embryo

Drosophila embryonic dorsal-ventral (DV) polarity is controlled by a group of sequentially acting serine proteases located in the fluid-filled perivitelline space between the embryonic membrane and the eggshell, which generate the ligand for the Toll receptor on the ventral side of the embryo. Spatial control of the protease cascade relies on the Pipe sulfotransferase, a fly homolog of vertebra...

متن کامل

Distinct functional specificities are associated with protein isoforms encoded by the Drosophila dorsal-ventral patterning gene pipe.

Spatially regulated transcription of the pipe gene in ventral cells of the Drosophila ovary follicle cell epithelium is a key event that specifies progeny embryo dorsal-ventral (DV) polarity. pipe encodes ten putative protein isoforms, all of which exhibit similarity to vertebrate glycosaminoglycan-modifying enzymes. Expression of one of the isoforms, Pipe-ST2, in follicle cells has previously ...

متن کامل

A Ventrally Localized Protease in the Drosophila Egg Controls Embryo Dorsoventral Polarity

Drosophila embryo dorsoventral (DV) polarity is defined by serine protease activity in the perivitelline space (PVS) between the embryonic membrane and the inner layer of the eggshell. Gastrulation Defective (GD) cleaves and activates Snake (Snk). Activated Snk cleaves and activates Easter (Ea), exclusively on the ventral side of the embryo. Activated Ea then processes Spätzle (Spz) into the ac...

متن کامل

Activation of a protease cascade involved in patterning the Drosophila embryo.

Dorsoventral patterning of the Drosophila embryo is initiated by a ventralizing signal. Production of this signal requires the serine proteases Gastrulation Defective (GD), Snake, and Easter, which genetic studies suggest act sequentially in a cascade that is activated locally in response to a ventral cue provided by the pipe gene. Here, we demonstrate biochemically that GD activates Snake, whi...

متن کامل

Drosophila embryonic dorsal-ventral polarity originates in the ovarian follicle through the restriction of pipe gene expression to a ventral subpopulation of follicle cells. Pipe, a homolog of vertebrate glycosaminoglycan-modifying enzymes, directs the ventral activation of an extracellular serine proteolytic cascade

Pattern formation along the dorsal-ventral axis of the developing Drosophila embryo depends upon two sequentially acting signal transduction cascades functioning in the ovarian egg chamber and in the egg, respectively (Ray and Schüpbach, 1996; Morisato and Anderson, 1995). In the egg chamber, spatially restricted activation of the Drosophila EGF receptor homolog, Torpedo, leads to the establish...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010